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SUMMARY

Molecular profiles obtained by electrophoresis may be exploited in classification pro-
blems by using molecular profiles of unknown individuals to predict their group mem-
bership. In a reference population, the uncertainty about group membership is redu-
ced if one or more informative profile components are identified through pilot experi-
ments. The size of a molecular profile is virtually infinite because an experiment could
include a huge number of different setups (e.g., pairs enzyme-probe) so that from the
amplified DNA of an individual thousands of bands could be obtained. Time and
cost of assessment put a constraint on the size of molecular profiles utilized in actual
experiments.

In this paper, pilot experiments are analyzed from the standpoint of statistical deci-
sion theory to find informative profile components that should be included in future
experiments. The trade-off between cost of the experiment and decrease of uncerta-
inty due to the profile assessment is defined to evaluate the convenience of different
actions in a quantitative way. The proposed framework is based on a well known body
of knowledge, but the analysis of actual pilot experiments with molecular profiles has
to cope with some open problems. '
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1. Introduction

Recent techniques of molecular biology (e.g., Beckmann and Osborn, 1992; Philips and
Vasil, 1994) have introduced the possibility of surveying ‘molecular phenotypes’ that
are closely related to the DNA level. Each experimental unit (individual) is scored for
the presence or the absence of DNA fragments (bands) on lines of electrophoretic gels.
The experimental setup, namely the restriction enzymes, the DNA probes and the
bio-chemical protocol, defines the features of DNA fragments detected on a gel. Thus,
the researcher has access to a potentially wide amount of molecular information.

The polymorphism found in many populations of economic interest may be useful
not only to study QTLs and to build genetic maps, but also to face discriminant
problems. A few examples from crop science make the statement clear:

— Identification of potato clones carrying an allele that determines tolerance to a
pathogen within a reference population made up of tolerant and susceptible groups;

— Early stage individual forecast of phenotypic value for a late maturation trait
in Zea mais;

— Classification of Zea mais cultivars for tolerance to stresses without the de-
struction of analyzed plants and without using expensive/dangerous physicochemical
reactions. ‘

In all these situations, a pilot experiment is performed to search for molecular
markers that are informative about group membership.

Pilot experiments typically deal with molecular profiles of large size. Moreover,
many of its components may be non-informative and expensive to assess. Therefore, in
future experiments the researcher would like to utilize a subset of the profile surveyed
in the pilot experiment.

The choice of profile component should be performed by means of the quantitative
evaluation of convenience. We propose a model based on statistical decision theory
to identify the best action in future experiments.

This paper opens with the notation and the description of pilot experiments de-
aling with molecular profiles. Then, the state of nature is defined as a parameter
representing the association between band patterns and groups in the reference po-
pulation. Inference about the unknown state of nature is performed following the
Bayesian setting (Bernardo and Smith, 1994). The utility of an action (choice of a
profile component) is defined as a trade-off between the information gain and the
cost of assessment, thus the best action is found by maximizing the expected utility
(Berger, 1985). Finally, the formalization of the decision problem reveals a few open
problems and suggests future developments to perform the analysis of actual pilot
experiments.
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2. Information, actions and utility

Let G be the reference population made up of M known groups (subpopulations)
g:{GOa"'aGiy-“aGM—l}: (1)

where it is assumed that the subpopulation size for each G; € G is unknown.
Let O be the set of observable bands included in the study

0={04,...,0;,...,0x}, 2)

so that the observable band O, j =1,..., K, corresponds to a specific location on a
electrophoretic gel that can be surveyed for the presence of DNA fragments. Then,
each experimental unit is an individual from group G; € G, and his digested DNA is
found (presence=1) or not (absence=0) in O; for j = 1,...,K: the string of zeros
and ones is called the molecular profile of the individual.

Let U = Uf__al U; be the set of sampled units, where U; = {ui, i, .. ui N}
is the set of individuals from group G;. In the adopted simple random sampling, the
total number of experimental units N is fixed, and the number of units sampled from
each group G; € § is not fixed in advance of the experiment. Besides, exchangeability
is assumed for individuals sampled from the same group.

Let B = {0,1} be a binary set in which 0 and 1 are, respectively, labels for
presence and absence of DNA, and BX be the Cartesian product of B. Let Qy =
{0,1,..., M — 1} be the set of integers used to label groups. A random vector

(Y, X1,Xa,...,XKg) on Qy x BX (3)

is associated to each experimental unit, where X ; is the random variable related
to O; for j = 1,...,K. A realization of the random vector (3) is indicated as
(,%1,%2,...,zx). The vector (X1, Xs, ..., XK) is also marked as X and a gene-
ric realization of X is x = (zy,...,2k). A subscript z is used to indicate a specific
band pattern x, (realization of the random variable X). The binary notation discloses
the band pattern that corresponds to each value z in the set {0,1,...,2X — 1}. For
example, the band pattern (0,1,1,0) is associated to z = 6, thus xg = (0,1,1,0).

The set of actions A specifies how future experiments may be performed, that
is the list of observable bands that will be surveyed. The information provided by
the profile component S C © about Y is not necessarily smaller than the information
provided by O, and if § is a proper subset then its cost of assessment may be smaller
than the cost of assessing O.

The set A is formally defined as

A={a:a=0,...,2% -1} (4)
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where @ = 0 = (0,...,0) means that no observable band will be assessed, that is
S = @, the empty set; a =1 = (0,...,0,1) means S = {Og};a=2K-1=(1,...,1)
represents the whole set of observable bands, that is S = O. In other words, A is
one-to-one with the power set P (O) built on O, and the notation X, = Xs stands
for the vector of random variables that includes only those X; for O; € S. A generic
realization of X, is indicated by x,.

The subscript z defined above has to be modified for indexing the band patterns
of X4, but the rules to build it are unchanged. The symbol x,,, indicates the specific
band pattern that corresponds to z when the index z is built using X, instead of X.
That is, z € Z(a) is the full notation for the dependence of the subscript values by a,
with Z(a) the set of values assumed by z. An implicit redefinition of z is chosen to
keep the notation simple.

The data set d from the pilot experiment performed by the researcher is

d={(y,z1,22,...,2x), : u€U}. (5)

It is used to increase the knowledge about the state of nature (see the next paragraph).
Note that a band pattern x, may have a not null frequency in several (all) groups
of G, a situation that is assumed to be typical of a generic reference population.

2.1. Bayesian inference about the state of nature

A discrete probability density for the random vector (3) is defined conditional on a
vector of parameters 0, the state of nature, as

p(Y1X1;X2:"'7XK|0)!OE@a (6)

where 8 = (6o0,..., 0iz, ..., Om—-1,), Zi,z 0;>=1,0<6;, <1, and where t =
2% —1 and 2% is the number of band patterns. Each element 6; , represents the
probability of observing the band pattern x, in the subpopulation G;, as it could be
made explicit using a two-way table ‘group by band pattern’. In other words, this is
a saturated model for a two-way contingency table.

The likelihood L(d | ) is proportional to

M-1,t
Ldie)oc [[ 6, )

1=0,2=0

where n; . are counts of experimental units carrying the band pattern x, that belong
to G;.

Equations (6) and (7) require some comments. First, the model for the two-way
table is saturated. This choice is due to the high number K of observable bands
in relation to the sample size N, a typical feature of many pilot experiments, e.g.
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K =1000 and N = 100. In these situations the search space of reduced models is
huge, and the support to discriminate among different models may be weak.

Second, the Bayesian paradigm (Bernardo and Smith, 1994) is adopted to specify
the degree of belief about the state of nature 8 in a quantitative way. In other words,
the uncertainty about 6 is modelled by a probability distribution, thus parameters are
considered as random variables. Besides having nice theoretical features (e.g., Box,
1983; O’Hagan, 1994; Bernardo and Smith, 1994), Bayesian inference seems suited
for the needs of molecular profile analysis. This point is made clear by the description
of the relationship between the genetic system and the proposed model.

The experimental observations in d provide information about 6. It is assumed
that the genetic features of G do not change fast enough to invalidate inferences about
future experiments based on d. This is a key point because:

— No explicit mechanism accounting for changes of G along generations is consi-
dered;

— Reference populations with sexual reproduction, short life cycle, high mutation
rates (at least in regions of the genome related to ) and genetic selection may show

a sharp change of the association pattern among variables (Y, X3, ..., Xx) on a short
time scale; in this situation no useful inference based on d is possible for future
experiments;

— No abstract space is adopted to minimize the effects of population changes or
to make the characterization of the dynamics easier (e.g., recombination maps).

Small changes in the state of nature over time-generations may be interpreted
as realizations of a random variable in the frequentist sense. Moreover, Bayesian
inferential statements based on pilot experiments are explicitly conditional on the
obtained data (available experimental information), so that information updating
is formally allowed. Moreover, prior information may be included in the analysis
if available. Finally, the Bayesian approach allows for the smoothing of parameter
values, an important feature for the analysis of pilot experiments.

The specification of a prior distribution p(@ | X), with A a vector of constants,
for the parameter 8 fully defines the model. An over-dispersed Dirichlet distribu-
tion (Bernardo and Smith, 1994) may be conveniently used to define the uncertainty
about the state of nature that is typical of many experimental setups. Moreover, the
advantages of a Bayesian conjugate setting are also available. The vector of constants
A= (Xo,1,-.-,Am—1,t) that defines the prior distribution has elements

iy = fori=0,...,M—-1;2=0,...,t, (8)

1
M-t
where A = Zi,z Ai> = 1. The adopted value of parameters makes the prior distri-
bution quite non-informative, although this definition is not unique (Bernardo and
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Smith, 1994, par 5.6.2). The vector of parameters related to the posterior distribution
p (6| d) has elements

Xi,z = )‘i,z + N, zy (9) .
where n; , is defined in (7) and A= Zz . Xi,z =N+1.

2.2. The utility of molecular profile components

The utility of assessing molecular profiles in samples from the reference population G
depends on the decrease of uncertainty due to the conditioning variables X,, a € A,
and on the overall monetary cost of assessment (number and type of observable bands,
equipment, reagents, work of technicians, etc.).

The quantitative evaluation of the gain in information due to profile components
is based on the family of conditional distributions

F={p¥ |%q,,0):a€ A z2€ Z(a),0 € O}. (10)

The elements of F capture the uncertainty about Y given the state of nature and
each band pattern that may be observed when the action a is chosen. Note that the
data set d does not appear in the conditional distributions of equation (10).

A subset F C F is associated to each a € A. The information content of
distributions that belong to F' may be quantified using the definition of entropy of a
discrete distribution (Bernardo and Smith, 1994)

M—1
H(pyie) =~ Y_ p(Y |6)-log(p(Y | 6)) (11)
Y=0
where the marginal distribution p (Y | 8) of Y is chosen as an example.

The uniform distribution has the maximum amount of entropy, thus it may be
used as a yardstick to quantify the gain in information due to the conditioning varia-
bles. The gain due to the knowledge of the state of nature § and the action a = 0
(S=0)is

M-1
Z(pyie) = Z(Py|xo,.0) = I(Py|xo0) = Z p(Y[6)-log (p“—_%_llo)) ) (12)
Y=0

because the state of nature does not necessarily correspond to groups of equal size in
the reference population.
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If the information contained within the molecular profile is used, then the infor-
mation gain given the state of nature € and the band pattern x, , is

M-1
p(Y |%,,:,0
T0vians) = Y. P(Y | %05,6) log (L0 2 0)).
Y=0

(13)
The overall expected gain in information for the different values of band pattern
X,,. depends on the probability of sampling each band pattern

I(py|x.,6) = E** [I(py|x,..0)] = Zp(xa,z | 0) - I(pyix, ..0)s (14)

where p (X, | ) is the marginal distribution obtained integrating out from the vector
(3) the random variable Y and the X components not included in the action a.

If a preference scheme can be expressed by a system of weights w = (wy,ws, .. .),
where ), w, =1, then the expected weighted gain in information may be defined by

Iw(pYIXa,G) = EX,,,w [I(lexu,O)] = Zp(xa,z ' 0) TWy - I(pY|xa,z,9)9 (15)

and a similar weighted expression Zw(py|g) may be also obtained, using a similar
weighting of eq. (12). The eq. (15) may be used if the researcher has special interest
for one or more groups, e.g. ¥ = 0 being the group of individuals that are resistant
to high pesticide doses.

The second component of the utility deals with the cost of assessment for the
profile component defined by a € A.

A utility function © x A — R is defined to map the state of nature @ and the
action a to a real number that quantitatively expresses the value of an action for
known

u(8,a) = a-I(py|x,,0) + B(Xa), (16)
where « is a positive constant and 3(X,) is a function that expresses the overall cost
of assessment if the action a is chosen, thus it has negative values. A positive value of
u implies a monetary gain, while a monetary loss is indicated by a negative value. It
is clear that a =0 = § =0 = ((X,) = 0 if the specification of costs is not restricted
to the assessment of observable bands.

It is important to underline that the definition of utility function, i.e. & and 8()
in eq. (16), is subjective and specific for the experimental setup that is considered.
Nevertheless, the definition in eq. (16) may be useful in many studies, because besides
its generality it also plays the role of basic definition for highly tuned and more specific
mappings. A straightforward extension of eq. (16) is obtained using weighted versions
of information gain.
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3. The decision as a convenient action

It is assumed that a specific equation like (16) may be built using utility theory
(Berger, 1985). The choice of an action a € A requires more than eq. (16) because
the state of nature, i.e. 6, is usually unknown.

Nevertheless, some knowledge about 6 is given by the posterior distribution
p(6 | d), that is based on the data set d of experimental observations.

The expected value of the utility function defines the expected monetary gain (or
loss) due to the choice of action a and the available information about the state of
nature. The conditional Bayes principle (Berger, 1985) prescribes the action a that
maximizes the expected utility, that is

max / w(0,a) - p(0 | d) - db (17)
(]

where the notation embeds some steps of algebra required to derive the posterior
distribution that is suited for computations with the state of nature related to action
a. In short, the posterior distribution p(@ | d) has to be transformed by appro-
priate addition of those cell parameters that are not distinguished under the choice
of action a.

The computation of the integral in eq. (17) may be difficult, especially for a
generic utility function, so Monte Carlo integration is often required (Berger, 1985).

If eq. (17) may be (approximately) calculated for each a € A then the decision
may be:

(#) a = 0; if values are negative for each action then the experiment should not
be performed;

(%) 1 < a < 2K —1; if only one positive (or one maximum) value is found then the
correspondent action should be chosen, either including or not one or more observable
bands;

(ii5) @ € A; if two or more actions in the set A C A have equal positive value
then the randomized choice of action @ (with equal probability over .Z) is required.

Nevertheless, a different approach is available when the last situation above occur.
It is based on the idea that a suboptimal action (smaller expected utility then the
best) may exists so that the expected utility is close to the best value, but several
(all) maximizer actions are embedded in the final decision.

Let A= {a1,az,...} be the set of actions, called generators, that have the same
value of expected utility, as specified by eq. (16) and (17). Then, the correspondent
set of profile components is @ = {81,82,...}, with S; the generic element related
to a;. The power set P (5) has generic element P. For each element P € P ((5),
observable bands included in the profile components belonging to P are merged into
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one profile component

=Us, (18)
sep
therefore the set of generators of S, is the subset Zp C A of actions that specifies the
components in P. Moreover, an action @, is associated to Sp. A reformulation of the
utility function in eq. (16) is required for actions obtained using generators

u(0,a,) = a - Helf‘zx I(py|x.,0) + B(Xs,), (19)

where the cost associated to @, is not changed, but the information gain is given by
the maximum obtained considering special subsets of the profile component, those
related to the generators in .Zp.

Eq. (19) may substituted in eq.(17) to identify ‘almost best’ actions, with as
many actions a € 4 embedded in a, as allowed by the increase of experimental cost.

Note that the computational burden due to the straightforward definition of the
utility function on the power set of a component S is avoided by delaying these
calculations to the situation in which they are required.

If values of expected utility found using equation (19) are far from the values
defining the set A then the randomized choice of action has to be performed.

4. Discussion

The proposed model and algorithms are just a sketch that may be followed to choose
the profile component that will be included in future experiments by evaluating the
convenience in a quantitative way.

In the paragraphs of this section some of the possible obstacles and pitfalls are
described, together with open problems.

4.1. The set O of observable bands

The definition of O should be performed by means of criteria suited to general use.
In some studies, an observable band is included in O only if one sampled indivi-
dual shows that DNA band, thus

0 = 0(d). (20)

If the sample size is small, say 100, this definition of ) causes a severe bias in the
quantitative evaluation of convenience, because the true sample space is larger then
considered.
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The set O should be considered a feature of the experimental setup that does not
depend on observed data. Some elements of the setup that influence the definition
of O are: the type of restriction enzymes and of DNA probes used in the reactions,
the bio-chemical protocol, the electric equipments required to assess the presence of
bands.

Nevertheless, difficulties in the assessment of bands may also arise in some specific
experimental setup (e.g., Navidi and Arnheim, 1994), especially if a too small quantity
of DNA is amplified. In those situations, the resolution power of the equipment is not
clearly defined, therefore the definition of O may be uncertain.

Extensions of our model to deal with errors-uncertainty in measurements should
be investigated.

4.2. The computational burden

Equation (17) may be evaluated by exhaustive calculation if the number of obse-
rvable bands K is relatively small, say 50. For K = 1000 or more, straightforward
calculations are unfeasible, so that simpler expressions are required.

A first strategy deals with the simplification of the data set d before it is used
in a decision-based framework. Stefanini and Camussi (1997) investigated the use of
Genetic Classifier Systems to decrease the number of observable bands K to a smaller
number by evaluating the information content of each observable band averaged on
the set of highly useful band patterns identified by the algorithm. The computational
burden and the lack of a smoothing mechanism discouraged further investigations on
this line.

A different approach is obtained by simplifying equation (17). Recently, Stefanini
(1998) proposed the optimization of a quantity based on the predictive distributions

P={p(Y |%qz:d):a€AzeZa)}, (21)
where
(Y | %oz d) = / P(Y | %a,2,8) - p(6] ) - dB, (22)

that may be obtained in a closed form, so that the computation of eq.(17) is avoided.
The search for optimal actions is performed using a Genetic Algorithm specifically
designed for this purpose. Promising results were obtained using simple simulated
data sets.

Besides Evolutionary Computation, other methods to simplify equation (17) may
be investigated. As example, if the budget for the next experiment is highly constra-
ined to a maximum b then it might be possible to define a maximum number of
observable bands ¢ = h(b) that can be assessed, so that whatever the information
gain expected from actions involving ¢’ > ¢ observable bands, the utility is set to the
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value of a big loss. In other words, the set of actions A is reduced to the subset
A:.={a:#(a) <c,a€ A} (23)

where the notation #(a) indicates the number of observable bands defined by a.
Equation (17) requires less computation because it is evaluated on A, C A.

4.3. Multiband enzymes and probes

In the discussion above, it was assumed that each observable band is generated by a
feature of the experimental setup that may be changed independently of the others,
e.g. each observable band is associated to a specific restriction enzyme. In this
situation, the definition of A in eq. (4) is suited to the features of the experimental
setup.

If strong dependence is present among profile components then the set A has
to be modified. For example, if the enzyme Ex,h € H (defined by the experimental
setup) generates several observable bands in each individual, then a profile component
can not be changed by excluding only one observable band from the set generated
by E}.

In future experiments, the choice of a profile component implies the inclusion of
all the observable bands associated to one or more useful observable bands, due to
experimental constraints (dependence). Thus the set of actions .A is transformed into
A/H, the set made up of equivalence classes induced by the dependencies of H.

The utility function has to be changed so that the information gain is the ma-
ximum on the set of actions obtained by ignoring some of the observable bands that
will be observed due to dependencies but that are not useful.

Finally, the definition of .A/H may be hard because it is based on the results of
the experimentation, thus being subject to sampling noise.

4.4. Missing values

In several situations, the data set d contains missing values. If many missing values
are sparse in the data set, the trivial strategy of ignoring observable bands carrying
missing information is unfeasible (curse of dimensionality).

Bayesian methods of imputation (Shafer, 1997) handle these situations, but the
computational burden may be unpractical. Simpler procedures (Stefanini, 1998) may
offer approximated computations suited to data sets with large number of observable
bands.
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5. Conclusions

In this paper, a procedure based on statistical decision theory is developed to choose
the profile component that should be included in future experiments regarding the
reference population studied in a pilot experiment. The leading criterion is a trade-off
between the gain in information about group membership and the experimental cost
of assessment.

The approach is sketched in its main components, so that the discussion of some
open problems is not vanishing. Therefore, the analysis of actual data should address
points that here are only mentioned. First, the prior distribution in equation (8) is
suited for the situation of ignorance about §. If some knowledge is available due to
other sources of information, then it should be properly used. Second, the choice of
a specific utility function may involve extra-monetizing considerations, as it happens
when pure scientific purposes are related to the experimentation. In those situations
costs may still be expressed on a monetary scale, but the gain in information is less
tractable on that scale.

The choice of molecular profile components also involves topics from the field
of experimental design if the pilot experiment is not performed at the time of the
analysis. It may also be the case that the reference population is not clearly defined,
so that special extensions to the proposed methods should be developed.

We hope to have raised the interest of many researchers on this subject, whose
economic implications are far from being immaterial.
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Wybér skladnikéw profilu molekularnego na podstawie ilosciowej
definicji przydatnosci

STRESZCZENIE

Profile molekularne wyznaczane poprzez elektroforezg mogg by¢ wykorzystane do kla-
syfikacji osobnikéw. Niepewnoé¢ co do przynaleznosci grupowej moze by¢ zmniejszona
Jezeli pewne informatywne profile sg zidentyfikowane poprzez doswiadczenie pilota-
zowe. W pracy analizuje si¢ takie doéwiadczenia z punktu widzenia statystycznej
teorii decyzji. Celem jest znalezienie takich sktadnikéw profili molekularnych ktére
powinny byt uwzglgdnione w dalszych eksperymentach. Definiuje si¢ kompromis po-
miedzy kosztem do$wiadczenia a niepewnoécia w ocenie profilu jako iloéciows ocene
przydatnosci réznych poczynan. Analiza bazuje na znanych metodach, jednak do-
$wiadczenia pilotazowe z profilami molekularnymi wskazuja na wiele praktycznych,
otwartych probleméw.

SLOWA KLUCZOWE: wnioskowanie Bayesowskie, teoria decyzji, profile molekularne.



